153 research outputs found

    A Technology Aware Magnetic QCA NCL-HDL Architecture

    Get PDF
    Magnetic Quantum Dot Cellular Automata (MQCA) have been recently proposed as an attractive implementation of QCA as a possible CMOS technology substitute. Marking a difference with respect to previous contributions, in this work we show that it is possible to develop and describe complex MQCA computational blocks strongly linking technology and having in mind a feasible realization. Thus, we propose a practicable clock structure for MQCA baptised "snake-clock", we stick to this while developing a system level Hardware Description Language (HDL) based description of an architectural block, and we suggest a delay insensitive Null Convention Logic (NCL) implementation for the magnetic case so that the "layout=timing" problem can be solved. Furthermore we include in our model aspects critically related to technology and real production, that is timing, power and layout, and we present the preliminary steps of our experiments, the results of which will be included in the architecture descriptio

    Rhinoclemmys areolata

    Get PDF
    Number of Pages: 2Integrative BiologyGeological Science

    Liquid Cybernetic Systems: The Fourth‐Order Cybernetics

    Get PDF
    Technological development in robotics, computing architectures and devices, and information storage systems, in one single word: cybernetic systems, has progressed according to a jeopardized connection scheme, difficult if not impossible to track and picture in all its streams. Aim of this progress report is to critically introduce the most relevant limits and present a promising paradigm that might bring new momentum, offering features that naturally and elegantly overcome current challenges and introduce several other advantages: liquid cybernetic systems. The topic describing the four orders of cybernetic systems identified so far is introduced, evidencing the features of the fourth order that includes liquid systems. Then, current limitations to the development of conventional, von Neumann‐based cybernetic systems are briefly discussed: device integration, thermal design, data throughput, and energy consumption. In the following sections, liquid‐state machines are introduced, providing a computational paradigm (free from in materio considerations) that goes into the direction of solving such issues. Two original in materio implementation schemes are proposed: the COlloIdal demonsTratOR (COgITOR) autonomous robot, and a soft holonomic processor that is also proposed to realize an autolographic system

    Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing

    Get PDF
    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC
    • 

    corecore